Most of the investment in the transport sector, however, can be paid back through energy cost savings. Acknowledgments This research was supported by the Environment Research and Technology Development Fund (S-6-1 and A-1103) of the Ministry of the Environment of Japan. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the YAP-TEAD Inhibitor 1 order source are credited. References Akashi O, Hanaoka T, Matsuoka Y, Kainuma
M (2011) find more A projection for global CO2 emissions from the industrial sector through 2030 based on activity level and technology changes. Energy 36:1855–1867. doi:10.1016/j.energy.2010.08.016 CrossRef Berndes G, Hoogwijk M, van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25:1–28CrossRef Clarke L, Edmonds J, Krey V,
Richels R, Rose S, Tavoni M (2009) International climate policy architectures: overview of the EMF22 international scenarios. Energy Econ 31:S64–S81. doi:10.1016/j.eneco.2009.10.013 CrossRef Dooley JJ, Dahowski RT, Davidson CL, Wise MA, Gupta N, Kim SH, Malone EL (2006) Carbon dioxide capture and geologic storage. Global Energy Technology Strategy Program Edenhofer O, Knopf B, Barker T, Baumstark L, Bellevrat E, Chateau B, Criqui P, Isaac M, Kitous A, Kypreos S, Leimbach M, Lessmann learn more K, Magne B, Scrieciu S, Turton H, van Vuuren DP (2010) The economics of low stabilization: model comparison of mitigation strategies and costs. Energy J 31(Special Issue 1):11–48 European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL) (2010) Emission Database for Global Atmospheric Research (EDGAR), release version 4.1 Fisher G, Schrattenholzer L (2001) Global bioenergy potentials through 2050. Biomass Bioenergy 20:151–159CrossRef Haberl (-)-p-Bromotetramisole Oxalate H, Erb KH, Krausmann F (2007) Human appropriation of net primary production (HANPP). International Society for Ecological Economics, Internet Encyclopedia of Ecological Economics Hanaoka T, Akashi O, Kanamori Y, Ikegami
T, Kainuma M, Hasegawa T, Fujimori S, Matsuoka Y, Hibino G, Fujiwara K, Motoki Y (2009) Global greenhouse gas technological mitigation potentials and costs in 2020, 2nd edn. AIM Interim Report Hendriks C, Graus W, van Bergen F (2004) Global carbon dioxide storage potential and costs. Ecofys, Utrecht Hoogwijk M, Faaij A, van den Broek R, Berndes G, Gielen D, Turkenburg W (2003) Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenergy 25:119–133 Hoogwijk M, Faaij A, Eickhout B, de Vries B, Turkenburg W (2005) Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass Bioenergy 29:225–257CrossRef Intergovernmental Panel on Climate Change (2007) Summary for policymakers.