tuberculosis H37Rv strain (laboratory strain: ATCC 25618) were th

tuberculosis H37Rv strain (laboratory strain: ATCC 25618) were the sources of the leuA gene with 14 and 2 copies, respectively, of the 57 bp tandem repeat [25]. E. coli was grown in Luria-Bertani (LB) medium. M. tuberculosis was grown on Middlebrook 7H11 agar supplemented with 10% Middlebrook OADC [Oleic acid Albumin Dextrose Catalase] Enrichment (Difco BBL). DNA manipulations Standard protocols for DNA manipulation, DNA transformation,

DNA sequencing and PCR amplification were performed as previously described [29, 30]. M. tuberculosis genomic DNA was prepared as previously described [31]. Cloning of the leuA gene containing 14 copies of the repeat units by PCR amplification Primer PD98059 research buy design: two primers, leu44 (5′-GGA ATT CCA TAT GAC AAC TTC TGA ATC

GCC C-3′) and leu66 (5′ -CGC GGA TCC CTA GCG TGC CGC CCG GTT GAC-3′) [4], which flank the 5′ and 3′ ends of the leuA gene, were designed to include NdeI and BamHI Compound Library research buy recognition sites to facilitate the cloning of the leuA gene into pET15b (Novagen). We used 50 μl reaction mixtures containing 50 ng DNA template, 0.2 mM each dNTP, 1 mM each primer, 1.25 mM MgCl2, 2 units Taq DNA polymerase, 10 mM Tris-HCl (pH 8.3), 50 mM KCl and 0.1% Tween20 for PCR. Reactions were denatured at 94°C for 2 min and then cycled through 30 rounds of denaturation at 94°C for 30 sec, annealing at 62°C for 2 min, and extension at 72°C for 2 min. These cycles were followed with a final Adenosine triphosphate cycle at 72°C for 10 min. PCR products from strain 731 were purified using a PCR purification kit (QIAGEN, Valencia, CA, USA), digested with NdeI and BamHI, ligated to compatible sites in pET15b and transformed into E. coli DH5α. Correct clones were identified by colony-PCR and subsequently confirmed by restriction enzyme digestion and DNA sequencing. The PP1 and PP2 primers (PP1: 5′-tac tac gag cac gcg atg a-3′,

PP2: 5′-GTG ATT GAC GGT GCG AT-3′), which flanked the tandem repeats, were used to sequence the cloned genes. The recombinant plasmids were then transformed into E. coli BL21 (λDE3). Protein expression E. coli BL21 (λDE3) cells harboring the recombinant plasmids were grown at 37°C in LB medium supplemented with 100 μg/ml of ampicillin until the culture reached mid log phase (~0.3–0.4 OD600). IPTG was added to the culture to a final concentration of 0.5 mM. The culture was incubated at 20°C with shaking overnight. The bacterial cells were harvested by centrifugation, washed once with 50 mM Tris-HCl, pH 7.0, and stored at -70°C until use. Protein purification One milligram of cells (wet weight) from 200 ml of culture media was resuspended in 1 ml lysis buffer (10 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, pH 8.0) and lysed by sonication. The cell lysate was centrifuged at 10,000 g for 30 min to separate the soluble and insoluble fractions. Cleared lysate containing the His6-tagged protein was transferred to a tube containing 0.

One may speculate that the organism has developed an ability to t

One may speculate that the organism has developed an ability to thrive in saline conditions and as such has gained a selective ecological advantage over other soil dwelling micro organisms. Previously, it has been indicated that

the killing efficiency of Burkholderia species, including B. pseudomallei against the nematode Caenorhabditis elegans was enhanced in a high osmolarity conditions [8]. This putative link between high salt concentration and an ability to withstand such conditions is evident in a subset of closely related organisms, namely, the B. cepacia complex (BCC). These are opportunistic pathogens of cystic fibrosis (CF) sufferers [9, 10] where the lung airway surface liquid has been hypothesized an increased concentration of NaCl [11], that is typically 2-fold higher than in healthy lungs [12]. More

recently, reports of a potential pathogenic role for B. pseudomallei in CF lung disease have been made [13]. CH5424802 order To date, little is known of how selleck chemicals elevated NaCl concentrations affect B. pseudomallei. As B. pseudomallei can survive and multiply under different environmental conditions and in various hosts [14, 15], it is likely that this organism has developed strategies to cope with high salt concentrations in both the natural environment and in its respective hosts. In the river water environment, osmolarity is believed to be less than 60 mM NaCl whilst in the human lung it is normally 50 to 100 mM and in the blood the bacterium can encounter a concentration of up to 150 mM NaCl [11, 16]. Recently, the secreted protein profile of B. pseudomallei following growth in salt-rich medium was revealed and provided a clue to the adaptive response MycoClean Mycoplasma Removal Kit of the organism to this stress [17]. Increased secretion of several metabolic enzymes, stress response protein GroEL, beta-lactamase like proteins and potential virulence factors were noted. Moreover, the effects of increasing salt concentration on the expression of a number of genes within the organism B. cenocepacia, formerly B. cepacia genomovar III, a close relative

of B. pseudomallei have been described [18]. Genes found to be upregulated included an integrase, an NAD-dependent deacetylase and an oxidoreductase amongst others. In Pseudomonas aeruginosa, another close relative of B. pseudomallei, the up-regulation of genes associated with osmoprotectant synthesis, putative hydrophilins, and a Type III protein secretion system (T3SS) after growth under steady-state hyperosmotic stress has been demonstrated [19]. High salt stress was also demonstrated to be one of the environmental stimuli affecting expression of the Ysa T3SS in Yersinia enterocolitica [20, 21]. The B. pseudomallei strain K96243 genome encodes three predicted T3SSs, one related to the Inv/Mxi-Spa systems of Salmonella and Shigella (Bsa, T3SS-3) and two related to systems found in plant bacterial pathogens (T3SS-1 and -2).

Discussion Aspergillus fumigatus is known as the most common caus

Discussion Aspergillus fumigatus is known as the most common cause of IA in humans. The extracellular proteins of A. fumigatus, which functions in enabling the fungi to adhere to host tissues and take up nutrients

from the hosts, play an important role in the LDK378 supplier interaction between fungi and hosts. The extracellular location of these proteins enables the proteins to interact easily with the host immune system. Accordingly, studies on the immunogenic nature of these extracellular proteins are of particular importance to understand the pathogenesis of A. fumigatus. The immunogenic proteins may represent candidate markers for the diagnosis of IA. In fact, preparations of A. fumigatus extracellular proteins have been used to detect antibodies in the sera of human patients or experimentally infected animals, and culture filtrates have also been used to raise polyclonal antibodies to detect A. fumigatus antigens in the sera or urine of patients or experimentally infected rats [26, 27]. Our group has previously observed that high

titers of antibodies against extracellular proteins of A. fumigatus are often present in the sera of critically ill IA patients (unpublished data). However, knowledge of the extracellular proteins of A. fumigatus and the corresponding antibodies is limited. To investigate the immunodominant antigens, the extracellular proteins at different intervals were extracted from 4 media (Aspergillus minimal medium, YEPG, Czapek-Dox medium, and RPMI-1640), then probed Selumetinib molecular weight with sera of IA patients. The results indicated that the protein yield

reached a maximum at 14 days, and the YEPG culture supernatant Enzalutamide contained the maximum number of proteins reacting with the sera in comparison to other media (unpublished data). Thus, the 14-day YEPG filtrate proteins were used in a subsequent study. In the present study, the immunodominant proteins from the culture filtrate of A. fumigatus were detected using an immunoproteomic approach. The immunoreactive protein spots showing a significantly different pattern of recognition in sera from IA patients when compared with specimens from controls were characterized by MS. Of 17 identified proteins, 7 have been reported as antigens of Aspergillus and/or other fungi. For example, DppV, TR, FAD-dependant oxygenase, pectate lyase A, aspartyl aminopeptidase, and NAD-dependent malate dehydrogenase are already known as antigens or allergens of Aspergillus [28–31]. Fructose-bisphosphate aldolase was identified as an immunogen in patients with systemic candidiasis [32]. Furthermore, diverse groups have reported that some metabolic enzymes interact specifically with human extracellar matrix proteins, such as fibronectin, laminin, and integrin-like vitronectin [33, 34], and are involved in adhesion and pathogenesis.

Cloning, expression and purification of recombinant GapA-1 The ga

Cloning, expression and purification of recombinant GapA-1 The gapA-1 gene from MC58 was cloned into the expression vector pCRT7/NT-TOPO to facilitate the expression and subsequent purification of 6 × histidine-tagged recombinant GapA-1 (Figure 1a). This was used to generate RαGapA-1. Immunoblot analysis confirmed that RαGapA-1 and anti-pentahistidine antibodies both reacted to the purified recombinant GapA-1 (Figure 1b &1c). Figure 1 SDS-PAGE and immunoblot analysis of

recombinant GapA-1. SDS-PAGE analysis confirms the purity of the recombinant GapA-1 purified under denaturing Ferroptosis inhibitor conditions (a). Immunoblot analysis shows that recombinant GapA-1 is recognized by RαGapA-1 (b) and anti-pentahistidine antibodies (c). Construction of an N. meningitidis gapA-1 null mutant strain To examine the roles of GapA-1 in the meningococcus, a gapA-1 knockout derivative of N. meningitidis MC58 was generated. Immunoblotting using RαGapA-1 showed that GapA-1 could be detected in whole cell lysates of wild-type but not MC58ΔgapA-1 (Figure 2, lanes 1 & 2) confirming that GapA-1 was expressed under the conditions used and that expression had been abolished in the mutant. This analysis further confirmed that the Saracatinib RαGapA-1 sera did not recognize GapA-2 (37-kDa) under the conditions used. To further confirm that the immuno-reactive protein was GapA-1, a wild-type copy of

gapA-1 was introduced in trans into MC58ΔgapA-1 using plasmid pSAT-14 (Table 1). Introduction of gapA-1

at an ectopic site restored GapA-1 expression (Figure 2, lane 3). Further immunoblot analyses using Dipeptidyl peptidase a panel of 14 N. meningitidis strains (Additional file 1) including representatives of differing serogroups and MLST-types showed that GapA-1 expression was conserved across all strains (data not shown). Expression was also conserved in N. gonorrhoeae FA1090 (data not shown). These data complement in silico predictions that GapA-1 is universally present and suggests that GapA-1 is constitutively-expressed across pathogenic Neisseria species. Figure 2 Immunoblot analysis of whole cell proteins from N. meningitidis using RαGapA-1. Analysis of MC58 wild-type, ΔgapA-1 mutant derivative and complemented mutant reveals the absence of GapA-1 in the ΔgapA-1 mutant preparation. Similar analysis shows the abolition of GapA-1 expression in the MC58ΔsiaD ΔgapA-1 mutant compared to the parental MC58ΔsiaD strain. Meningococcal GapA-1 is only surface-accessible to antibodies in the absence of capsule Grifantini et al showed using flow cytometry that GapA-1 was accessible to specific antibodies on the surface of meningococci [27]. However, the methodology used involved pre-treatment of the cells with 70% ethanol to permeabilize the capsule, making it unclear whether GapA-1 was accessible to antibodies in encapsulated bacteria.

In Escherichia coli, the first enzyme in the methionine biosynthe

In Escherichia coli, the first enzyme in the methionine biosynthesis pathway, homoserine o-succinyltransferase (MetA) [1, 3–5], is extremely sensitive to many stress conditions (e.g., thermal, oxidative or acidic stress) [6–8]. At temperatures higher than 25°C, MetA activity is reduced, and the Protein Tyrosine Kinase inhibitor protein tends to unfold, resulting in a methionine limitation in E. coli growth [9]. MetA reversibly unfolds at temperatures approaching

42°C and is a substrate for the ATP-dependent proteases Lon, ClpP/X and HslVU [6]. At temperatures of 44°C and higher, MetA completely aggregates and is no longer found in the soluble protein fraction, thus limiting growth [9]. The chemical chaperone trimethylamine oxide reduces insoluble MetA accumulation and improves E. coli growth at elevated temperatures [9]. It has been suggested that MetA could be classified as a Class III substrate for chaperones because this molecule is extremely prone to aggregation [10]. Despite the importance of MetA in E. coli growth, little information

exists on the amino acid residues involved in the inherent instability of MetA. The sensitivity of MetA to multiple stress conditions suggests that this enzyme might be a type of ‘metabolic fuse’ for the detection of unfavorable growth conditions [7]. Previously, we used random mutagenesis of metA to improve E. coli growth at elevated temperatures [11]. Mutations that resulted in the amino acid substitutions I229T and N267D enabled the E. coli strain WE to grow at higher temperatures and increased the ability of Luminespib datasheet the strain to tolerate acidic conditions. In

this study, we extended our stabilization DOCK10 studies using a computer-based design and consensus approach [12] to identify additional mutations that might stabilize the inherently unstable MetA enzyme. To achieve pronounced thermal stabilization, we combined several single substitutions in a multiple mutant, as the thermo-stabilization effects of individual mutations in many cases were independent and nearly additive [12]. Here, we describe the successful application of the consensus concept approach and the I-mutant2.0 modeling tool [13] to design stabilized MetA mutants. The consensus concept approach for engineering thermally stable proteins is based on an idea that by multiple sequence alignment of the homologous counterparts from mesophiles and thermophiles, the nonconsensus amino acid might be determined and substituted with the respective consensus amino acid, contributing to the protein stability [12]. I-Mutant2.0 is a support vector machine-based web server for the automatic prediction of protein stability changes with single-site mutations (http://​gpcr.​biocomp.​unibo.​it/​~emidio/​I-Mutant2.​0/​I-Mutant2.​0_​Details.​html). Four substitutions, Q96K, I124L, I229Y and F247Y, improved the growth of the E. coli WE strain at elevated temperatures.

Therefore,

Therefore, high throughput screening compounds it is not surprising that Klotho is implicated in pleiotropic pathophysiological regulation. Indeed, a defect in klotho gene expression has been reported to cause systemic phenotypes similar to those observed in patients with chronic renal failure [1, 7]. On the other hand, reduced renal production of Klotho is observed not only in patients with chronic renal failure, but also in those with acute kidney injury [5, 8]. However, the relationship between the amount of urinary excreted Klotho and renal function among patients with chronic renal failure still remains poorly understood. Recently, a sandwich

enzyme-linked immunosorbent assay (ELISA) system has been established for the soluble form of Klotho [9]. In the present study, Imatinib mw this system was used to determine not only the serum but also the urine Klotho levels among patients treated with peritoneal dialysis

(PD). The qualitative and quantitative relationships between the soluble form of Klotho and the residual renal function were also explored. Patients, materials, and methods Thirty-six patients with end-stage renal failure who were undergoing PD with conventional dialysis fluid and who had a urine output of at least 100 ml per day participated in the study. The patients were in a stable condition, and none had peritonitis at the time of the study or in the 4 weeks preceding the study. The body weight at the start and end of each dialysis exchange was also recorded. The usual medications, such as anti-hypertensives, erythropoietin, and phosphate binders, were continued during the study period. For comparison, eleven normal control subjects who ages ranged

from 20 to 74 years were also included in the present study. The research protocol was approved by the Medical Ethics Committee Molecular motor of Jichi Medical University, and all patients included in the present study provided their informed consent. Urine and dialysate samples were taken not only for determining the level of soluble Klotho, but also for evaluating the residual renal function, peritoneal clearance of creatinine and urea, and the KT/V urea index, which integrates the efficiency of solute removal (urea clearance, K), treatment duration (T), and patient size (urea distribution volume, V) determined from the formula described by the Canada-USA (CANUSA) peritoneal dialysis study group [9] and Watson et al. [10]. Urine and dialysate specimens were collected during a 24-h study period for the clearance determinations. The patients were able to accurately carry out urine collection and peritoneal dialysis exchanges. The serum sodium, chloride, potassium, calcium, inorganic phosphate, urea, and creatinine levels were all measured just after the collection periods.

69 [25]) MOTHUR was also used to generate a rarefaction curve, d

69 [25]). MOTHUR was also used to generate a rarefaction curve, determine the Chao1 richness estimator, and calculate the Shannon and LIBSHUFF diversity indices. OTU coverage (C) was calculated using the equation C = 1-(n/N) × 100, where n is the number of OTUs represented by a single clone and N is the total number of clones analyzed in the library. Identification of representative OTU sequences was performed using the BLAST search engine http://​blast.​ncbi.​nlm.​nih.​gov/​Blast.​cgi against

the NCBI nucleotide sequence database [26]. For phylogenetic reconstruction, 51 alpaca methanogen 16S rRNA sequences (one representative from each alpaca OTU) were combined with 45 methanogen 16S rRNA gene sequences representing major archaeal phylogenetic MK-8669 manufacturer groups. PHYLIP (Version 3.69 [25]) was used to construct a neighbor-joining tree [27], which was bootstrap resampled 1,000 times. Nucleotide sequence accession numbers The sequences from this study have been deposited in the GenBank database under the accession numbers JF301970-JF302647. For a detailed list of clones and accessions, see Additional file 1: Table S1. Results Phylogenetic analysis of methanogenic archaea in the alpaca forestomach We investigated

the diversity and phylogeny of methanogenic archaea in the forestomach of the alpaca by constructing individual methanogen 16S rRNA gene clone libraries from five animals. The number of non-chimeric clones isolated per individual library ranged from 179 to 201, for a combined total of 947 methanogen 16S rRNA gene sequences for analysis in our study. Based on a 98% find more sequence identity criterion, established from the level of identity that exists between 16S rRNA genes from validly characterized Methanobrevibacter species [6], our combined library sequences were grouped into 51 distinct OTUs (Table 1). Clones were unevenly distributed between OTUs, with 80.8% of sequences grouped within OTUs 1-10, compared with 19.2% for the remaining

41 OTUs. We used 2 different methods to assess the depth of coverage and sampling efficiency of our study at the OTU level. While the calculated rarefaction curve proved to be non-asymptotic, NADPH-cytochrome-c2 reductase it approached the saturation point (Figure 1), which we conservatively estimated to be 63 OTUs using the Chao1 richness indicator. Coverage (C) for individual and combined libraries was greater than 90% at the OTU level (Table 2). Together, these results support that the sampling efficiency of our study was very high. Table 1 OTU distribution of clones between individual alpaca animals OTU Nearest Valid Taxa % Seq. Identity Alpaca 4 Alpaca 5 Alpaca 6 Alpaca 8 Alpaca 9 Total Clones 1 Mbr. ruminantium 98.8 29 22 13 54 21 139 2 Mbr. millerae 98.1 27 15 49 12 7 110 3 Mbr. millerae 98.3 20 35 26 19 9 109 4 Mbr. millerae 99.0 33 1 16 4 55 109 5 Mbr. millerae 98.5 16 13 21 17 15 82 6 Mbr.

Residues Arg307′, Ile350, Arg288′, and Asp170 make up the middle

Residues Arg307′, Ile350, Arg288′, and Asp170 make up the middle layer. The residues composing the middle and the inner layers are strictly conserved between AlrSP, AlrEF, AlrBA, AlrGS, and AlrSL. An outer layer exists comprised of Thr345, Glu171, Val232 and Gly264′, but these residues, which are able to interact with solvent directly, are not well conserved. Figure 6 Molecular surface representations of the entryway to the active site of alanine racemase from S. pneumoniae. https://www.selleckchem.com/products/jq1.html (A) The surface of three layers of entryway residues: residues comprising the inner layer

are pink (here, the constricting Tyr352 and Tyr263′ residues can be seen), the middle layer residues are orange, and the outer layer residues are blue. The PLP cofactor is colored green. Primed numbers denote residues from the second monomer. (B) Surface of the entryway colored by electrostatic potential (same view as in A). The AlrSP active site entryway includes the conserved pair of acidic residues Asp170 and Glu171. The equivalent residues in E. coli, Asp164 and Glu165, have been posited to play a role in substrate orientation [37]. Although the active sites of alanine racemases in general are moderate in size, it is difficult for inhibitors to access because of a constriction

in the entryway corridor [34]. The smallest constriction in the entryway corridor of AlrSP is between Tyr263′ and Tyr352 of the inner layer (Figure 6A), which provide an opening width of only about 2.6Å for an active site inhibitor selleck screening library to pass through (the distance between the closest atoms of these two side chains with the van der Waals radius for each atom subtracted). As a result, the substrate entryway itself has been proposed as an alternative target for inhibitor development [32, 34]. Wang et al. [52] have proposed this idea previously for another enzyme, histone deacetylase-like protein. Dimer interface Dimerization is essential for the catalytic

activity of alanine racemase [47]. Both monomers contribute to HA-1077 in vitro the overall composition of the active site, the alanine entryway, and the binding pocket. Within the AlrSP dimer interface there are 33 hydrogen bonds and 10 salt bridges (Table 5). There are no disulfide or covalent bonds across the interface. 91 residues from each monomer are involved in intermonomer interactions. The buried surface areas of the A and B monomers are 3035 and 3020 Å2, respectively; both values are 19% of the total surface area of each monomer. The interface surface area is similar to that seen in the closely related AlrEF and AlrGS (Table 5). 30% of the interface residues in AlrSP are polar, 47% are non-polar, and 22% are charged.

The mixture was vortexed and then centrifuged at 10,000 g for 5 m

The mixture was vortexed and then centrifuged at 10,000 g for 5 minutes. The supernatant was removed and immediately stored at −70°C. The remaining whole blood from EDTA tubes was then centrifuged at 1500 g at 4°C for 15 min to obtain plasma. Collection tubes containing no additive were allowed to clot at room temperature for 30 minutes and then centrifuged at 1500 g at 4°C for 15 min to obtain serum. Blood aliquots were stored at −70°C until assayed, except for homocysteine which was analyzed in fresh plasma using a competitive immunoassay format (Tri-State Clinical Laboratory Services, LLC, Cincinnati,

OH). Antioxidant capacity was analyzed in serum using the Trolox-equivalent antioxidant capacity (TEAC) assay using procedures outlined by the reagent provider (Sigma Chemical, St. Louis, MO). The coefficient of variation (CV) was 5.2%. For the analysis of glutathione, whole blood was first deproteinated Trametinib supplier using 5% metaphosphoric acid, as indicated above. The supernatant was then used to separately assay for TGSH and GSSG, and reduced glutathione (GSH) was calculated mathematically. For analysis of GSSG, supernatants were first neutralized with NaOH, and then 4-vinylpyridine was

mixed with the supernatant and incubated at room temperature for one hour in order to derivatize GSH. Assays for glutathione were performed using commercially available reagents (Northwest Life Science Specialties, Vancouver, WA). The CV for TGSH and GSSG was 3.2% and 4.9%, respectively. Statistical analysis This was a small exploratory KU-57788 supplier pilot/proof of concept study, and it was not expected that significant changes over time, or significant differences between treatment groups, would be observed unless the differences were very large. Therefore

the efficacy analysis described below should be considered only a formality; the main purpose of this study was to generate a general sense of the response of subjects to the two doses of MSM and to obtain estimates of endpoint variability and other parameters that could be used to inform the design of a larger, more definitive study, if one were to be carried out. The acute changes over the course of the testing visit, and the long-term changes over the course of a one-month MSM administration period, were tested for significance within each group, and between the two groups. Each outcome measure Cediranib (AZD2171) was tested using an analysis of covariance (ANCOVA), with the value of the variable at the end of the study being the dependent variable, the dose being the main factor, and the value of the variable at baseline being the covariate. The coefficient of the product (relative to dose) and its standard error of estimate were calculated from the ANCOVA. Significant product efficacy was inferred if this coefficient was significantly different from zero. Analyses were performed using “R” statistical software (version 2.13.1; R Foundation for Statistical Computing).

Several selective growth methods had been used, such as nanospher

Several selective growth methods had been used, such as nanosphere lithography [20], electron-beam lithography [21, 22], and conventional photolithography [19]. In this regard, we present a selective area growth of single crystalline Sn-doped ITO NWs to improve the field emission properties owing to the reduction of the screen effect. In our previous study, the conductive properties of ITO NWs have been investigated, which is compatible with that

of the high quality ITO thin films [23, 24]. A periodically arrayed Au film prepared via a copper grid mask is used to control the growth area of ITO NWs in order to investigate the screen effect. Importantly, the length of ITO NWs was found to significantly see more influence the field emission properties. As a result, the reduced turn-on fields from 9.3 to 6.6 V μm−1 and improved β values from 1,621 to 1,857 could be found

after the selective area growth of Sn-doped ITO NWs at 3 h. Methods Growth of LY2835219 Sn-doped ITO nanowires The ITO nanowires were grown by the hydrogen thermal reduction vapor transport method. Indium (99.9%) and tin (99.9%) were mixed as source powders with the weight ratio of 9:1 and placed in an alumina boat (Al2O3). The 5-nm-thick Au film as the catalyst was deposited on the silicon substrate by a sputter process and patterned by a copper grid mask. The alumina boat was placed in the center of the alumina tube and then the substrates were put into the low region very (several center meters) next to the source powder. The system was heated up to 600°C with a heating rate of 5°C/min. Consequently, the ITO NWs were grown at 600°C for 10 and 3 h with a constant flow of mixed Ar/H2 gas (10% H2) at 90 sccm. Another oxygen gas was flowed into the furnace with 0.5 sccm as a source of oxygen to form ITO NWs. After the furnace had been cooled down to room temperature, gray products were found on the surface of the silicon substrate. Characterization

Structures of products were analyzed by X-ray diffractometer (XRD, Shimadzu XRD 6000, Nakagyo-ku, Kyoto, Japan) and transmission electron microscope (TEM, JEOL-2010, JEOL Ltd., Akishima, Tokyo, Japan). The morphology was analyzed by field emission scanning electron microscope (SEM, JEOL-6500). The X-ray photoelectron spectroscopy (XPS, ULVAC-PHI, PHI Quantera SXM, Chanhassen, MN, USA) was used to examine the chemical composition of nanowires. Field emission measurement of ITO NW arrays was performed with a parallel plate as the cathode and a circular steeliness tip as the anode (1-mm diameter). A high voltage–current instrument, Keithley 237 (Cleveland, OH, USA), was operated to perform the field emission characteristics. All emission measurements were carried out in a vacuum chamber with a pressure kept under 10−6 Torr The applied voltage between the electrodes was increased to a maximum of 1,000 V by 20-V step.