Nature 2003, 424:824

Nature 2003, 424:824.CrossRef 34. Atwater HA, Polman A: Plasmonics for improved photovoltaic devices. Nat Mater 2010, 9:205.CrossRef

35. O’Connor D, Zayats AV: Data storage: the third plasmonic revolution. Nat Nanotechnol 2010, 5:482.CrossRef 36. Stipe BC, Strand TC, Poon CC, Balamane H, Boone TD, Katine JA, Li JL, Rawat V, Nemoto H, Hirotsune A, Hellwig O, Ruiz R, Dobisz E, Kercher DS, Robertson N, Albrecht TR, Terris BD: Magnetic recording at 1.5 Pb m −2 using an integrated plasmonic antenna. Nat Photonics 2010, 4:484.CrossRef 37. Yang XC, Li ZH, Li WJ: Optical properties of Ag nanoparticle-glass composites. Chin Sci Bull 2008, 53:695.CrossRef 38. Yang XC, Dong ZW, Liu HX: Effects of thermal treatment #NVP-BGJ398 purchase randurls[1|1|,|CHEM1|]# on the third-order optical nonlinearity and ultrafast dynamics of Ag nanoparticles embedded in silicate glasses. Chem Phys Lett 2009, 475:256.CrossRef 39. Zong RL, Zhou J, Li B: Optical properties of transparent copper nanorod and nanowire arrays embedded in anodic alumina oxide. J

Chem Phys 2005, 123:94710.CrossRef 40. Zong RL, Zhou J, Li Q: Linear and nonlinear optical properties of Ag nanorods/AAM composite films. Chem Phys Lett 2004, 398:224.CrossRef 41. Zong RL, Zhou J, Li Q, Du B, Li B, Fu M, Qi XW, Li LT, Buddhudu S: Synthesis and optical properties of silver nanowire arrays embedded in anodic selleck inhibitor alumina membrane. J Phys Chem B 2004, 108:16713.CrossRef 42. Duan JL, Cornelius TW, Liu J, Karim S, Yao HJ, Picht O, Rauber M, Mueller S, Neumann R: Surface plasmon resonances of Cu nanowire arrays. J Phys Chem C 2009, 113:13583.CrossRef 43. Yang XC, Zou X, Liu Y: Preparation and characteristics of large-area and high-filling Ag nanowire arrays in OPAA template. Mater Lett 2010, 64:1451.CrossRef 44. Yang XC, Zou X, Liu Y, Li XN: Preparation and characteristics of Cu/AAO composite. J Funct Mater (Chinese) Aurora Kinase 2010, 41:321. 45. Mackenzie JE, Moore AJW, Nicholas JF: Bonds broken at atomically flat crystal surfaces—I: face-centred and body-centred cubic crystals. J Phys Chem Solids 1962, 23:185.CrossRef 46. Tian ML, Wang JG, Kurtz J, Mallouk TE, Chan MHW: Electrochemical growth of

single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett 2003, 3:919.CrossRef 47. Wang HW, Shieh CF, Chen HY, Shiu WC, Russo B, Cao GZ: Standing [111] gold nanotube to nanorod arrays via template growth. Nanotechnology 2006, 17:2689.CrossRef 48. Maurer F, Brötz J, Karim S, Molares MET, Trautmann C, Fuess H: Preferred growth orientation of metallic fcc nanowires under direct and alternating electrodeposition conditions. Nanotechnology 2007, 18:135709.CrossRef 49. Eustis S, El-Sayed MA: Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum. J Appl Phys 2006, 100:044324.CrossRef 50.

Comments are closed.