Genetic resources are a key component of biodiversity, but are al

Genetic resources are a key component of biodiversity, but are also of particular importance for adaptation measures of forest ecosystems to climate change. Taking Norway Spruce in Austria as a case study, Schueler

et al. (2013) analyse the genetic variation of this species in response to climate change and the shift in site characteristics. They discuss the effectiveness of a network of genetic conservation units in Austria to safeguard the genetic AG-881 diversity of the species. The most promising AZD5363 cost provenances in terms of climate change adaptation are found in the warmest and driest areas of the Norway Spruce’s distribution in Austria. This confirms the importance of the rear-edge populations for climate change adaptation and provides valuable hints for the evaluation of the effectiveness of current conservation efforts to protect genetic diversity. In regions that are highly vulnerable to climate change, tree species shifts from less drought-resistant to more drought-resistant species can affect the biodiversity of forest

ecosystems. How these species shifts are moderated and influenced by game populations and their browsing activities is the main research question of the contribution from Katona et al. (2013). The authors analysed data of understory species composition and browsing impact from five different even-aged forest ecosystems in Hungary. PI3K inhibitor They found that non-native, drought-resistant Robinia pseudoacacia, which is currently extending in Hungarian forests in the course of climate change, is highly preferred by browsing ungulates. In contrast, native species which are susceptible to climate change induced drought effects, such as Fagus sylvatica or various Quercus species, are selectively avoided. Hence, ungulate browsing might mitigate climate change induced effects on tree species composition and herbivore feeding preferences should play a vital role when climate change adaptation strategies are planned for the conservation of forest biodiversity. Until now, there have been few strategies for adapting forest and conservation management to climate change and Cediranib (AZD2171) the transfer of science-informed knowledge

to practice is still poorly developed as recommendations are often too general. However, in regions characterised by a high vulnerability to climate change, practitioners in forestry and conservation management already have to cope with the impacts of climate change. Against this backdrop, the article of Milad et al. (2013) analyses currently implemented and planned adaptation measures in forest management in Germany as well as the underlying motivations for their implementation. By conducting expert interviews with practitioners of different forest ownership classes in different regions in Germany the authors show that both regional vulnerability to climate change and personal values affect the implementation of adaptation measures.

Comments are closed.