We have on the other hand observed that 2 mM cyclohexanone is not

We have on the other hand observed that 2 mM cyclohexanone is not so far from concentrations that have observable negative effects on cell growth [34], and we therefore wanted to create conditions at which XylS expression could be increased further without using near-toxic concentrations of cyclohexanone. In a parallel ongoing project we had observed

that the expression level from the Pb promoter is, like Pm, very sensitive to the amounts of its regulator, ChnR. This was taken advantage of by substituting the chnR native promoter with constitutive promoters from the Registry of Standard Biological Parts, which were identified by a library screening [35]. Two promising variants were used to drive 4EGI-1 chnR expression in derivatives of pFZ2B1, namely pFZ2B2 and pFZ2B3, such that XylS expression could be controlled by cyclohexanone, as above, but hopefully at higher levels. As expected this resulted in increased XylS expression (measured

as luciferase activity), up to 50-fold (pFZ2B3) above the maximum for pFZ2B1. In spite of this, the expression from Pm (in pFS15) was not higher than when pFZ2B1 was used for expression of XylS click here (Figure 4a,c and d, grey squares). Figure 4 Effects of XylS expression variations on induced and uninduced Pm activity. Upper host ampicillin tolerance levels as a function of the expression level of XylS in the absence (white squares) and presence (grey squares) of Pm induction (0/1 mM m-toluate). The shape that is half grey and half white represents an identical data point for both induced and uninduced. Relative expression from Pm and relative 4��8C XylS expression were determined in the same way as described in Figure 3. The data points

were collected from cells containing the Pm-bearing plasmid pFS15 in all cases and a: pFZ2B1, inducer concentrations as in Figure 3 (the grey data points are the same as the corresponding points in Figure 3); b: pET16.xylS, 0 mM IPTG; c: pFZ2B2, 0.25 and 0.5 mM cyclohexanone (from left to right); d: pFZ2B3, 0.25 and 0.5 mM cyclohexanone (from left to right); e: pET16.xylS, 0.5 mM IPTG. For studies of expression from Pm in the absence of m-toluate (see further down) we also expressed xylS from the very strong bacteriophage T7 promoter (in plasmid pET16.xylS), heavily used for recombinant protein production. Activation of the T7 promoter requires the presence of T7 RNAP, and its production is induced by isopropyl β-D-1-thiogalactopyranoside (IPTG). In the presence of this inducer XylS expression (measured as luciferase activity) was increased about five-fold compared to the maximum achieved by pFZ2B3, but the corresponding host tolerance to ampicillin did not increase any further (Figure 4e).

Comments are closed.