The best model showing the sophisticated evolution and complexity of the T4SS is the VirD4/D4pTi system, which has acquired many regulatory mechanisms to transport either virulence factors (VirE2, VirF), or a nucleoprotein complex (VirD2-T-DNA complex) to plant cells [21].
Another example is the Legionella vir PCI-34051 homologue system (Lvh), which is partially required for conjugation and that can also act as an effector translocator involved in a virulence-related phenotype, under conditions mimicking the spread of Legionnaires’ disease from environmental niches [22, 23]. To date, the most accepted T4SS classification is based on the division of the systems into four groups [24]: (i) F-T4SS (Tra/Trb), (ii) P-T4SS (VirB/D4), (iii) I-T4SS (Dot/Icm), and (iv) GI-T4SS (T4SS that is found so far associated exclusively with genomic islands). This classification provides this website a framework for classifying most T4SSs. Despite this classification, unfortunately the proper genes nomenclature has not been standardized yet among the four groups. For example, there are several genes belonging to the F-T4SS group that are named tra or trb and the same nomenclature is used for some genes belonging to the P-T4SS group. Also, several orthologs of the Dot/Icm system identified in the Plasmid Collb-P9 have also been Selleckchem LY3023414 termed tra genes
instead of dot/icm homologs. Alternatively, there are some examples showing that a particular T4SS group subunit has homology with a subunit of another T4SS group. That is the case of the DotB subunit of the I-T4SS group in L. pneumophila, which is homolog of P-T4SSs VirB11 [22]. Interestingly, deletion experiments in L. pneumophila show that the DotB
Protein Tyrosine Kinase inhibitor protein can be replaced by the subunit LvhB11 to perform the conjugation process in this bacterium [22]. Hence, the ATPase DotB family [InterPro:IPR013363] shares the Type II secretion system protein E domain [Interpro:R001482), which is also found in the ATPase VirB11 family [Interpro: IPR014155]. Thus, it seems that DotB is a T4SS subunit more related to the P-type group than to the I-type group. Consequently, such cases make it difficult for researchers to decide, for instance, which one of the T4SS groups should be assigned for a given coding sequence (CDS) under a process of genome annotation. In order to integrate the knowledge about Type IV Secretion Systems into a selected collection of curated data, we developed a comprehensive database that currently holds 134 ortholog clusters, totaling 1,617 predicted proteins, encoding the T4SS proteins organized in a hierarchical classification. This curated data collection is called AtlasT4SS – the first public database devoted exclusively to this type of prokaryotic secretion system.