Secondary incubation of the membrane was then carried out using a 1:5000 dilution of goat antimouse or anti-rabbit IgG tagged with horseradish peroxidase. The blot was developed using Opti-4CN substrate kit (Bio-Rad Laboratories, Hercules, CA). The blots were scanned using the Biophotonics system (Biophotonics Corp., Ann Arbor, MI). The band intensity was evaluated using the Neuronal Signaling inhibitor Intelligent
Quantifier software (Bio Image, Ann Arbor, MI). The overexpression of eIF4E and TLK1B was quantified as x-fold over the samples of benign tissue from noncancer specimens run concurrently on the gel. Analysis of TMAs The first TMA (TMA1) was constructed to optimize antibody dilutions. The second TMA (TMA2) was designed with triplicate specimens to analyze intra-individual variability. In this HDAC inhibitor mechanism regard, three separate plugs from each patient were taken from each original block and re-imbedded into TMA2. Replicate breast tumor specimens were HSP990 solubility dmso analyzed for plug-to-plug reproducibility by staining the TMAs immunohistochemically and quantitating them using the ARIOL imaging system (described below). The third TMA (TMA3) was designed to compare eIF4E to its downstream effector
proteins using a larger set of breast cancer specimens. ARIOL Imaging The ARIOL imaging system (Genetix, San Jose, CA) was used to quantify antibody staining of the TMAs. The specimens were scanned at a low resolution (1.25×) and high resolution (20×) using Olympus BX 61 microscope
with an automated platform (Prior). The slides were loaded in the automated slide loader (Applied Imaging SL 50). The images with high resolution were used for training and quantification purpose. The system was trained to select the stained and unstained cells/nuclei by the color of staining and shape of nuclei such that brown staining was considered positive and blue staining was considered negative. The number of cells/nuclei stained was calculated and represented as Galeterone percentage of total cells/nuclei stained positively. By measuring both immunostaining intensity and percentage, data obtained are reproducible, objective measurements of immunoreactivity. Because standardizing IHC, from the fixation of tissues to the analysis of IHC results is critical, all immunohistochemistry data were normalized to cytokeratin. To control for the variability in tumor cellularity from one patient to another, and to also control for variations in the number of tumor cells at different TMA spots (intra-tumoral variations), the number of epithelial (tumor) cells present at each TMA spot as highlighted by expression of cytokeratin 7, was used for normalization of each protein expression studied [26]. For each protein, a score was generated based on the area with and the intensity of the brown staining reaction. The scores were then exported to an Excel spreadsheet for analysis.