More recently, revascularisation decisions based on invasive
fractional flow reserve (FFR) have shown improved event free survival. Cardiovascular magnetic resonance (CMR) perfusion imaging has been shown to be non-inferior to nuclear perfusion imaging in a multi-centre setting and superior in a single centre trial. In addition, it is similar to invasively determined FFR and therefore has the potential to become the non-invasive Akt inhibitor test of choice to determine need for revascularisation.
Trial design: The MR-INFORM study is a prospective, multi-centre, randomised controlled non-inferiority, outcome trial. The objective is to compare the efficacy of two investigative strategies for the management of patients with suspected Selleck Rapamycin CAD. Patients presenting with stable angina are randomised into two groups: 1) The FFR-INFORMED group has subsequent management decisions guided by coronary angiography and fractional flow reserve measurements. 2) The MR-INFORMED group has decisions
guided by stress perfusion CMR. The primary end-point will be the occurrence of major adverse cardiac events (death, myocardial infarction and repeat revascularisation) at one year. Clinical trials.gov identifier NCT01236807.
Conclusion: MR INFORM will assess whether an initial strategy of CMR perfusion is non-inferior to invasive angiography supplemented by FFR measurements to guide the management
of patients with stable coronary artery disease. Non-inferiority of CMR perfusion imaging to the current invasive reference standard (FFR) would establish CMR perfusion imaging as an attractive non-invasive alternative to current diagnostic pathways.”
“Introduction: The central dopaminergic system is involved in the pathophysiology of several neuropsychiatric disorders. Intracerebral microdialysis and electrophysiology provide two powerful techniques to investigate dopamine (DA) function and the mechanism of action of Copanlisib research buy psychotropic drugs in vivo. Methods: Here, we developed a protocol allowing the combined measurement of neurochemical and electrical activities of the nigrostriatal and mesoaccumbens DA pathways, by coupling in vivo microdialysis and electrophysiology in the same isoflurane-anesthetized animal. DA neuron firing rate and burst firing were measured in the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA), whereas extracellular levels of DA and its main metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) were monitored in the striatum and the nucleus accumbens (NAc). The validity of the protocol was assessed using various drugs known to modify DA neuron activity in vivo.