“
“In non-neuronal cells, inactivation of protein kinase D (PKD) blocks fission of trans-Golgi network (TGN) transport carriers, inducing the appearance of long tubules filled with cargo.
We now report on the function of PKD1 in neuronal protein trafficking. In cultured hippocampal pyramidal cells, the transferrin receptor (TfR) and the low-density receptor-related protein (LRP) are predominantly transported to dendrites and excluded from axons. Expression of kinase-inactive PKD1 or its depletion by RNA interference treatment dramatically and selectively alter the intracellular trafficking and membrane delivery of TfR- and LRP-containing vesicles, without inhibiting exit from the TGN Anlotinib or inducing Golgi
tubulation. After PKD1 suppression, dendritic membrane proteins are mispackaged into carriers that transport VAMP2; these vesicles are distributed to both axons and dendrites, but are rapidly endocytosed from dendrites and preferentially delivered to the axonal membrane. A kinase-defective mutant of PKD1 lacking the ability to bind diacylglycerol and hence its Golgi localization does not cause missorting of TfR or LRP. These results suggest that in neurons PKD1 regulates TGN-derived sorting of dendritic proteins and hence has a role in neuronal polarity.”
“Riluzole is the only drug approved for the treatment of amyotrophic lateral sclerosis (ALS) but its precise mode of action is not properly understood. Damage to axonal transport of neurofilaments is believed to be part of GSK2245840 the pathogenic mechanism in ALS and this has been selleck chemical linked to defective glutamate handling and increased phosphorylation of neurofilament side-arm domains. Here, we show that riluzole protects against glutamate-induced slowing of neurofilament transport. Protection is associated with decreased neurofilament side-arm phosphorylation and inhibition of the activities
of two neurofilament kinases, ERK and p38 that are activated in ALS. Thus, the anti-glutamatergic properties of riluzole include protection against glutamate-induced changes to neurofilament phosphorylation and transport. (C) 2009 Elsevier Ireland Ltd. All rights reserved.”
“We herein report the synthesis and characterization of ABA triblock copolymers that contain two complementary association motifs and fold into single-chain polymeric nanoparticles (SCPNs) via orthogonal self-assembly. The copolymers were prepared using atom-transfer radical polymerization (ATRP) and possess different pendant functional groups in the A and B blocks (alcohols in the A block and acetylenes in the B block). After postfunctionalization, the A block contains o-nitrobenzyl-protected 2-ureidopyrimidinone (UPy) moieties and the B block benzene-1,3,5-tricarboxamide (BTA) moieties.