In an effort

In an effort compound libraries to develop improved binding antagonists of the polo-like kinase 1 (Plk1) polo-box domain (PBD), we optimized interactions of the known high affinity 5-mer peptide PLHSpT using oxime,based post solid-phase peptide diversification of the N-terminal Pro residue. This allowed us to achieve up to two orders of magnitude potency enhancement. An X-ray crystal structure of the highest affinity analogue in complex with Plk1 PBD revealed new binding interactions in a hydrophobic channel that had been occluded in X-ray structures of the unliganded protein. This study represents an important example where amino acid modification by post solid-phase oxime ligation can facilitate the development of protein-protein interaction inhibitors by identifying new binding pockets that would not otherwise be accessible to coded amino acid residues.

CDK9 is the kinase of positive transcription elongation factor b and facilitates the transition of paused RNA polymerase II to processive transcription elongation. CDK9 is a validated target for the treatment of cancer, cardiac hypertrophy, and human immunodeficiency virus. Here we analyze different CDK9/cyclin T variants to identify a form of the complex amenable to use in inhibitor design. To demonstrate the utility of this system, we have determined the crystal structures of CDK9/cyclin T and CDK2/cyclin A bound to the CDK9-specific inhibitor CAN508. Comparison of the structures reveals CDK9-specific conformational changes and identifies a CDK9-specific hydrophobic pocket, adjacent to the alpha C-helix.

By comparison with a previously published structure of CDK9/cyclin T/human immunodeficiency virus TAT we GSK-3 find that the CDK9 alpha C-helix has a degree of conformational variability that has the potential to be exploited for inhibitor design.
From a large combinatorial free overnight delivery library of chemically constrained bicyclic peptides we isolated a selective and potent (K-i = 53 nM) inhibitor of human urokinase-type plasminogen activator (uPA) and crystallized the complex. This revealed an extended structure of the peptide with both peptide loops engaging the target to form a large interaction surface of 701 angstrom(2) with multiple hydrogen bonds and complementary charge interactions, explaining the high affinity and specificity of the inhibitor. The interface resembles that between two proteins and suggests that these constrained peptides have the potential to act as small protein mimics.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>