Further experiments will show to which extent this is due to reduced metabolic activity at this growth stage. It is also noteworthy, firstly, that proteins that are down-regulated in X. a. pv. citri biofilms are enriched for the GO terms ‘generation of precursor metabolites and energy’ and secondly, that the biofilm proteome mainly displayed changes in outer membrane and receptor or transport proteins suggesting that they may have a role in maintaining
a functional external structure as well as enabling Gefitinib Repotrectinib cost appropriate flow of molecules and signals required in this lifestyle. This study is the first report of a X. a. pv. citri biofilm proteome and the information gained will support future comparative analyses of differentially expressed genes and/or
proteins involved in biofilm formation. In addition, the data will also inform approaches to a more detailed physiological investigation into the function of individual proteins and their role in biofilm formation. Methods Bacterial strains, culture conditions and media X. axonopodis pv. citri was grown at 28°C in Silva Buddenhagen (SB) medium (5 g/l sucrose, 5 g/lyeast extract, 5 g/l peptone, and 1 g/l glutamic acid, pH 7.0) and XVM2 medium (20 mM NaCl, 10 mM (NH4)2SO4, 1mM CaCl2, 0.01 mM FeSO4, 5 mM MgSO4, 0.16 mM KH2PO4, Selleck AR-13324 0.32 mM K2HPO4, 10 mM fructose, 10 mM sucrose and 0.03% (w/v) casein acid hydrolysate (casaminoacid), pH 6.7). Bacteria were grown in SB with shaking until exponential growth phase and then diluted 1:10 in fresh XVM2 medium. For planktonic cultures 3-oxoacyl-(acyl-carrier-protein) reductase these dilutions were grown under agitation at 200 rpm on a rotating shaker and cells were recovered after 24 hours of growth at early stationary phase. For biofilms, 2 ml-aliquot of these dilutions were placed in 24-well PVC plates and incubated statically for seven days at 28°C. In both cases the population size was estimated by recovering bacteria by centrifugation and plating adequate dilutions on SB plates. After 48 hours colonies were counted and
related to the volume of the original cultures. The X. axonopodis pv. citri strain used in this work is named Xcc99-1330 and was kindly provided by Blanca I. Canteros (INTA Bella Vista, Argentina). Confocal analysis of biofilm architecture The GFP-expressing X. a. pv. citri strain previously constructed using the parental strain Xcc99-1330 [6] was used in the present study and statically grown in 24-well PVC plates, as described above, and biofilm development was analyzed at 1, 3 and 7 days by confocal laser scanning microscopy (Nikon Eclipse TE-2000-E2). Protein extraction and resolubilization for the proteomic analysis Cellular pellets of X. a. pv. citri planktonic and biofilm cultures were obtained by centrifugation and resuspended in urea buffer (9 M urea, 2 M thiourea and 4% (w/v) 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS)) with vigorous vortexing at room temperature.