Down to a mutual center-to-center distance R between pigments of 1.5 nm, the transfer rate
scales with R −6 according to the Förster equation whereas as shorter distances excitonic effects start to play a major role and excitations start to become more and more delocalized over the different pigments (see, e.g., van Amerongen et al. (2000)). However, if the pigments are getting too {Selleck Anti-cancer Compound Library|Selleck Anticancer Compound Library|Selleck Anti-cancer Compound Library|Selleck Anticancer Compound Library|Selleckchem Anti-cancer Compound Library|Selleckchem Anticancer Compound Library|Selleckchem Anti-cancer Compound Library|Selleckchem Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|buy Anti-cancer Compound Library|Anti-cancer Compound Library ic50|Anti-cancer Compound Library price|Anti-cancer Compound Library cost|Anti-cancer Compound Library solubility dmso|Anti-cancer Compound Library purchase|Anti-cancer Compound Library manufacturer|Anti-cancer Compound Library research buy|Anti-cancer Compound Library order|Anti-cancer Compound Library mouse|Anti-cancer Compound Library chemical structure|Anti-cancer Compound Library mw|Anti-cancer Compound Library molecular weight|Anti-cancer Compound Library datasheet|Anti-cancer Compound Library supplier|Anti-cancer Compound Library in vitro|Anti-cancer Compound Library cell line|Anti-cancer Compound Library concentration|Anti-cancer Compound Library nmr|Anti-cancer Compound Library in vivo|Anti-cancer Compound Library clinical trial|Anti-cancer Compound Library cell assay|Anti-cancer Compound Library screening|Anti-cancer Compound Library high throughput|buy Anticancer Compound Library|Anticancer Compound Library ic50|Anticancer Compound Library price|Anticancer Compound Library cost|Anticancer Compound Library solubility dmso|Anticancer Compound Library purchase|Anticancer Compound Library manufacturer|Anticancer Compound Library research buy|Anticancer Compound Library order|Anticancer Compound Library chemical structure|Anticancer Compound Library datasheet|Anticancer Compound Library supplier|Anticancer Compound Library in vitro|Anticancer Compound Library cell line|Anticancer Compound Library concentration|Anticancer Compound Library clinical trial|Anticancer Compound Library cell assay|Anticancer Compound Library screening|Anticancer Compound Library high throughput|Anti-cancer Compound high throughput screening| close, then an unwanted secondary effect called concentration quenching may occur, leading to a shortening of the excited-state lifetime, thereby decreasing the quantum efficiency (Beddard and Porter 1976). Very roughly, PSI of plants can be approximated by a cylinder of 12-nm diameter and 5-nm height, containing 170 Chls. This means that the pigment concentration in this system is 0.5 M. The excited-state lifetime of a diluted solution of Chls is around 6 ns, but it is below 100 ps at 0.5 M in lipid vesicles (Beddard et al. 1976). Apparently, PSI is able to avoid concentration quenching to keep the quantum efficiency close to 1. What is the trick? It is the protein that keeps the pigments at the correct distance and geometry to facilitate fast Torin 2 in vivo energy transfer and to prevent
excited-state quenching. In addition, the protein has a role in tuning the energy levels of the pigments (defining at which wavelength/color the maximum absorption occurs) whereas its vibrations (phonons) Etomoxir in vivo can couple to the electronic transitions of the pigments to broaden the absorption spectra and to allow energy transfer (both uphill and downhill) through the excited-state energy landscape (Van Amerongen et al. 2000). But this is not yet all. When one reads about the energy transfer efficiency, it is nearly always written that EET should follow
an energy gradient (from high-energy pigments Amylase to low-energy ones) to be efficient. Indeed, the picture used to exemplify photosynthetic energy transfer is commonly a deep funnel, where the energy is transferred between pigments of colors throughout the whole rainbow to end up on the primary donor which is the pigment with the lowest excited-state energy. This picture fits rather well with the antennae of cyanobacteria, the phycobilisomes, but it is clearly not a realistic representation of the situation in plants and green algae in which the most of the pigments are more or less isoenergetic. While it is correct for PSI that the primary electron donor (absorbing around 700 nm) is lower in energy than the bulk pigments (the maximum absorption of PSI is at 680 nm), it is also true that almost all PSI complexes contain Chls that absorb at energies below that of the primary donor, and they are responsible for the so-called red forms (Karapetyan 2006; Brecht et al. 2009). It was already shown in Croce et al.